Applied Mathematics

Applied Mathematics Concentration

Philosophy: Much of the history and philosophy of Applied Mathematics can be summarized by a quote from the preface to The Functions of Mathematical Physics by Harry Hochstadt, "The topics covered... were first studied by the outstanding mathematicians of the eighteenth and nineteenth centuries. Among the many who devoted themselves to these studies are Gauss, Euler Fourier, Legendre, and Bessel. These men did not recognize the modern and somewhat artificial distinction between pure and applied mathematics. Much of their work was stimulated by physical problems that led to the studies of differential equations. Frequently they developed generalizations to obtain results having no immediate or obvious applications. As a consequence mathematics was often ahead of its time having tools ready before physicists and engineers felt the need for them." The concentration reflects this historic interplay by presenting topics of obvious interest to applied scientists as well as being of purely mathematical interest.

The concept of transformations plays a central role in applied mathematics. Partial differential equations are transformed into ordinary differential equations. Ordinary differential equations are transformed in algebraic equations. Algebraic systems are transformed into simple algebraic systems. Thus, one can understand why linear algebra plays a fundamental role in the concentration.

Content: The concentration consists of five courses. The core of the Applied Mathematics Concentration is made up of the three courses: Calculus III (Math 2412), Linear Algebra (Math 3310), and Applied Mathematics (Math 4315). Fundamental to modern applied mathematics is the study of structures known as vector spaces and the linear operations on those spaces. The student is introduced to these concepts in linear algebra. These ideas are expanded in Calculus III where the linearity and multidimensionality introduced in linear algebra are combined with the infinite processes of calculus. These concepts continue to be drawn together in Applied Mathematics, where the analogy is completed between discrete problems, continuous one-dimensional problems, and continuous multi-dimensional problems.

The fourth course is an applied mathematics elective such as Differential Equations (Math 3324), Probability (Math 3326), Statistics (Math 3327), Numerical Analysis(Math 3338), or a Computer Science course approved by director.

The fifth course is an elective from a field other than mathematics. This allows the student to tailor the concentration to his or her own interests and reinforces the concentration's interdisciplinary nature.

Possible choices include:

  • CHE 3331  Physical Chemistry I 
  • ECO 3327  Statistical Theory and Methods 
  • ECO 3328  Business and Economic Forecasting
  • PHI 4333  Philosophy of Science 
  • PHY 3341  Optics 
  • PHY 3363  Computational Physics
  • PHY 4327  Electromagnetic Theory
  • PHY 4423  Theoretical Mechanics
  • PHY 4424  Quantum Mechanics
  • PSY 3337  Statistical Methods
  • Other electives as approved by the department.

News

UD in Service: Ph.D. Students Share 'Confessions' in South Irving

UD students not only read St. Augustine's Confessions in Rome, traveling to Ostia to marvel at the place in which, according to Book IX, St. Augustine and his mother, St. Monica, had a joint mystical vision of God -- they also travel 4.4 miles from the Irving campus to read the text with residents of South Irving.

+ Read More

How to Build a Shortwave Radio

As you know if you’ve read even some of our first UD Reads book, "All the Light We Cannot See," it’s possible to build a radio from random, scavenged parts, as long as you can find the necessary random, scavenged parts, as Werner does in the book. This is also essentially what Assistant Professor and Department Chair of Physics Jacob Moldenhauer did as well: He scavenged parts from the Physics Department, and built a radio.

+ Read More

Thomas S. Hibbs Appointed President of University of Dallas

The University of Dallas Board of Trustees announced today that it has unanimously selected Thomas S. Hibbs, Ph.D., BA '82 MA '83, to serve as the university's ninth president. The first alumnus of UD to be president, Hibbs has served as dean of the Honors College and distinguished professor of ethics and culture at Baylor University since 2003.

+ Read More